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Fig. 1. Diffuse reflection photograph of vanadium. On the left-hand side is a strong Laue spot. To the right of this is the diffuse
110 reflection. Above and to the right is a small spot due to an extra structural diffuse reflection.
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Fig. 2. Microdensitometer contour diagram. The figures are scale divisions on the recorder chart. The dotted lines indicate ex-
trapolated background density surrounding the Laue spot.
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Fig. 2. Microdensitometer contour diagram. The figures are scale divisions on the recorder chart. The dotted lines indicate ex-
trapolated background density surrounding the Laue spot.
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Table 1. Data on the diffuse reflection from vanadium

Intensity
Back- K* Skew Diverg.
rekha Peak ground Diff. K¥ = 5-35cm. (KF/K*)? corr. corr. D,

101 51 37-5 13-5 10-30 0-29 1-163 1-00 54
102 52 40-2 11-8 8-99 0-38 1-126 1-00 35
001 48 42-2 5-8 9-00 0-38 1-085 1-00 16:5
010 51 38-8 12-2 7-12 0-61 1-163 1-00 23-5
121 58 41 17 6-68 0-69 1-126 0-98 27

important point in Fig. 2 is the foot of the perpendic-
ular, N, from the relp (Ramachandran & Wooster,
1951) on to the film. There are several ways in which
this may be found. The value of ({—6) determines the
distance of NV from the centre of the Laue spot. The
angle (i—0) was determined by a photograph in which
the Laue and Bragg spots were recorded as small well
defined spots. The corresponding value of the ratio, s,
of the distance PN to the radius of the reflecting
sphere, is 0-0352. On Fig. 2 the Bragg spot is repre-
sented by P’ and the Laue spot by L. A second method
of fixing the position of N was afforded by the extra
reflections. A careful study had been made of the
@-values corresponding to these reflections and the
angle corresponding to the extra line just to the right
of the diffuse spot in Fig. 1 was known. From this
also the positions of the Bragg reflection P’, the Laue
spot L, and N could be found. A third check was
provided by the Kossel lines present on the film.
These are due to the V K« radiation generated on the
crystal and their intersections fix certain directions
relative to the crystallographic axes.

Fig. 3. Diagram showing geometrical construction by which
the g-, p-values of rekhas are transferred to Fig. 2.

A graphical method was used for determining the
points of emergence of the rekhas (Ramachandran &
Wooster, 1951) indicated in Fig. 2. The diagram used
for this interpretation is shown in Fig. 3. The o-, -
values (Hoerni & Wooster, 1952) were calculated
from the known orientation of the crystal and by
means of Fig. 3 these angles were converted into
rectangular coordinates in the microdensitometer dia-
gram.

The data read off from Figs. 2 and 3 are given in
Table 1. The intensity is given in arbitrary units.
The radius of the reflecting sphere was made 157-8 cm.
so that the microdensitometer diagram was on the
same scale as the reflecting sphere. Using this magnifi-
cation 1 mm. on the film corresponds to 27-2 mm. on
the microdensitometer diagram. The millimetre divi-

sions on the film are shown in Fig. 2. The skew correc-
tion (Ramachandran & Wooster, 1951} is determined
simply by the angles ¢ and @ read off from Fig. 2.
The divergence correction was found by superposing
on the point in Fig. 2, corresponding to a given rekha,
a grid of nine contiguous cqual rectangles, the total
area of the grid being the same as that of the Bragg
spot, when exposed to the same density as the diffuse
spot. The intensity at the centre of each of these nine
areas was read off and the average found. Generally
this was the same as the intensity at the point at the
centre of the network. Where there was a difference
the ratio was taken as the divergence correction. In
view of the other inevitable inaccuracies and the small-
ness of the correction, the second-order diffuse re-
flection was not subtracted from the observed diffuse
reflection.

Interpretation

Vanadium has three independent elastic constants
€115 C19, aNd ¢4y, and from our experimental results we
can obtain two ratios, namely, ¢,,/¢,;, €44/¢;; Which will
be denoted y;, and y,. Though in principle the
x-values can be directly derived from the rekhas with
simplest indices, in this investigation it was found
better to use all the rekhas and a least-squares proce-
dure. This procedure was as follows. Particular values
for y,, and y,, are assumed and the usual formulae
(Ramachandran & Wooster, 1951) are applied to
calculate the ¢, K[ABCux values, which are propor-
tional to the experimentally determined D, values.
The five ratios of 10¢,;K[ABClui/D, are calculated
and the relative standard deviation of these ratios
from their mean found. This relative standard devia-
tion is taken as an index of the correctness of the
choice of values of y,, and y,,. Ideally it should be
zero, when a correct choice had heen made. In fact,
it only approaches zero in the manner shown in Fig.4.
The axis of the ordinates is y,, and that of abscissae
is y44. It will be seen that the contours of the minimum
values for the relative standard deviation of all five
ratios cover a narrow area centred about the point

x12 = 068, 5, =035. (1)

Polycrystalline elastic constants

The elastic constants of the polycrystalline material
can be calculated from the elastic constants of the
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single crystal, and these formulae provide a check on
the values determined above. Two approaches to the
problem have been made by Voigt (1910) and Reuss
(1929) respectively. Using superseripts to distinguish
the formulae of these authors, the polycrystalline
Young’s modulus and rigidity modulus may be written
in terms of the elastic constants or moduli,

(€17 —C12+3C44) (€11 +2€45)

EY = ,
2¢;; 43¢5ty
g L )
R = 5 ) B = ——5-—— (3)
381112815844 48)) —4815+384

In terms of the elastic ratios and the cubic com-
pressibility 3, these expressions may be rewritten:

B — 3(1— 12+ 3%44) Qv — 3(1—Y12+3744) (4)
B2+3y12+¥ad) 56(1+2y2)
15y44(1—112)
B+ s12+3%aa+ X1oXaa—2032)
R _ 15 y44(1 —x10) e
BB+3x12+4 a0+ 8 1270 —612)

EE =

(=]

Table 2 shows the values of § given by Bridgman
(1927, 1952) and the values extrapolated by the present
authors to 200 °C.

Table 2. Values of the compressibility f

30 °C. 75 °C. 200 °C.
(cm.?/kg.) (em.2/kg.) (em.2/dyne)
1927 6:09x 10~7 6:12x 1077
1952 6-19 6-22
Extrapolated 6-43x 10713

Hill (1952) has shown that the Voigt and Reuss
expressions give results which diverge from the true
values in opposite senses. For a series of combinations
of 412 7a4 the corresponding values of E', G7, E®
and G% have been calculated. These calculated values
are compared with the experimentally measured values
which are as follows (in units of 10'! dyne/em.2):

E = 12-4-13-1 (Hample, 1954); 12-7 (Lacy & Beck,
1956); 13-6 (Rostoker, Yamamoto & Riley,
1956); 13-7 (Graft, 1956).

G = 4-64 (Lacy & Beck, 1956). (6)

The dotted lines in Fig. 4 show the values of the
elastic ratios for which the formulae (4) and (5) give
polycrystalline constants which are in the range of the
experimentally determined values given above. As
%12s Xaa are changed to correspond to a point at the
centre of the area between the dotted lines, the values
calculated for BV, GV and E%, G¥ respectively diverge
from the observed values in opposite directions. The
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Fig. 4. The two full-line contours correspond to points in
which the relative standard deviation of the five
10¢,,K[ABC s/ D, ratios from their mean is 4-5% and 5%
respectively. The dotted lines show the values of the elastic
ratios for which the formulae (4) and (5) give polycrystalline
elastic constants in the range of the experimentally deter-
mined E and G. (6).

true values of y,, and y,, must therefore lie in the area
bounded by the two narrow strips.

Combining this evidence with the contours for the
relative standard deviation of our five ratios we come
to the conclusion that y,, and y,, must lie in the range

Z12 = 0:70£0:02, y,, = 0-33£0-02. (7)

These values are in fair agreement with those derived
from the thermal diffuse scattering measurements
alone. We take as the true values of the elastic ratios
the arithmetic means of (1) and (7), which gives

X1z = 0-69£0-02, y,y = 0-34£0-02. (8)

Note.—By combining the polycrystalline data with the
thermal diffuse scattering measurements we ignored the fact
that the polycrystalline elastic constants have been measured
at room temperature, while our thermal diffuse scattering
measurements refer to 200 °C. Nevertheless the temperature
dependence of the polycrystalline elastic constants of metals
suggests that the error arising in this way lies within the limits
of accuracy of our measurements and thus it does not alter
our results.

Absolute values of the elastic constants

The cubic compressibility is related to the elastic
constants by the relation,

B = 3/{911(1+2Z12)} .

As our measurements were made at 200 °C. the value
of # due to Bridgman (1927, 1952) was extrapolated
to this temperature and the value used was 6-43 x 1013
cm.2/dyne. From the value for y;,, namely 0-69, the
value of ¢;; was determined. Finally from the elastic
ratios the other two elastic constants were determined
giving the final values

¢y = 194603, ¢, = 13-5+0-2,
dyne/cm.2.

Cqq = 6-7£0-5x 1011
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An Optical Method for Producing Structure-Factor Graphs

By C. A. TayLor aND F. A. UNDERWOOD
Physics Department, College of Science and Technology, Manchester 1, England

(Recewved 11 November 1958)

Structure-factor graphs (Bragg & Lipson, 1936) may be very informative at certain stages of a
structure determination but the labour involved in their preparation is sometimes considered to be
too great for profitable use. A simple extension of optical transform theory shows that they can be
prepared easily and with sufficient accuracy for most purposes by the methods available for prepar-
ing optical transforms. Some examples are given, together with calculated graphs for comparison.

Introduction

In the course of a study of the projection on the basal
plane of a hexagonal inorganic crystal optical-trans-
form methods were tried but were found to be of
limited use. The projection under consideration has
the probable two-dimensional space group p6m and
hence general positions of twelve-fold multiplicity.
It is therefore difficult to consider first the transform
of a single asymmetric unit and later the combined
transform of all the related asymmetric units as sug-
gested by Hanson, Lipson & Taylor (1953). The trans-
form is, in fact, more obviously affected by the pat-
terns produced by the symmetrical repetition of each
atom than by the arrangement of the atoms within
the asymmetric unit. This suggests that it may be
better to consider the problem atom by atom rather
than in terms of the whole asymmetric unit. Since
the number of independent observable reflexions is
small (nine for this structure) it seemed likely that
structure-factor graphs (Bragg & Lipson, 1936) would
provide a useful method of approach and attention
was turned to the possibility of reducing labour by
preparing them optically. The technique proves to be
quite simple for this two-dimensional space group and

is applicable to all the other 16 groups, although for
some it is a little more troublesome.

Use of structure-factor graphs

Structure-factor graphs are contoured maps showing
the combined contribution of an atom and its sym-
metry-related counterparts to a particular reflexion as
a function of the position of the atom in the unit cell.
They are probably most useful in semi-quantitative
work in the earlier stages of structure determinations
and can give rapid indications of the general plau-
sibility of an atomic arrangement in terms of the
agreement with selected reflexions. At a later stage
the direction of probable atomic movements may be
deduced and a useful feature is the possibility of
assessing the ‘sensitivity’ of various atomic positions;
where the slope of the structure-factor graph is steep,
small movements make significant changes in the total
structure amplitude but atoms lying on plateau-like
regions may be moved a considerable distance without
affecting that particular reflexion. Since structure-
factor graphs are rarely used when accurate quantita-
tive measurements are needed it seems probable that



